1000325

見本 花子 様

このたびは、「毛髪ミネラル検査」をご利用いただき、誠にありがとうございます。 検査が完了いたしましたので結果表をお送りいたします。内容をご確認になり健康管理 にお役立てください。

検査結果表セットの内訳

- 1. 測定結果(1)・(2)
- 2. 測定結果の解説①・②・③
- 3. 推奨栄養素の説明(1・2・3)
- 4. 検査結果表について
- ●ら・べるびぃ予防医学研究所のホームページ内にある『検査結果表が届いたら』のページもご覧ください。(https://www.lbv.jp/application/after/) 右記 QR コードからもアクセスできます。

※万一、検査結果表セットに不足・破損などございましたら再度お送りいたしますので、 下記『お客様総合窓口』までご連絡ください。

検査に関するお問い合わせは

ら・べるびい予防医学研究所 お客様総合窓口

〒103-0006 東京都中央区日本橋富沢町 8-4 イワサキ第一ビル tel. 03-5614-2711

0120-117-424 (平日9:00~17:00)

inf@LBV.jp

見本 花子 様の測定結果①

大型: 2020-07/07 大型号 1000325

必須ミネラル

生体を構成する成分であり、人体に重要な役割を果たすミネラルです。

元素名	今回値 ① (標準範囲)	前回値 ② (標準範囲)	前々回値 ③ (標準範囲)	履歴	低値注意	要注意	基準範囲標準	要注意	高値注意
Na ナトリウム	9,722 (6,230~37,670)	32,645 (7,750~53,940)	64,132 (11,640 ~71,760)	① ② ③			_		
אַלעל K	23 267 (3 940 ~ 30 720)	21 564 (4,770 ~38,070)	69 539 (9 390 ~69 480)	① ② ③			_		
Mg マグネシウ <i>L</i>	33 604 (36 020 ~159 020)	57 292 (31 £60 ~172 £30)	13 580 (17 420 ~83 570)	① ② ③			_		
Ca カルシウム	407 693 (547 260 ~2 085 890)	733 438 (445 730 ~2 327 000)	343 045 (203 560 ~1,160 380)	① ② ③					
P עע	141 280 (111 300 ~152 950)	144 861 (111 450 ~ 157 ,110)	225,155 (117,070~158,020)	① ② ③			_		
Se セレン	752 (564~966)	731 (541 ~946)	930 (671~985)	① ② ③					
Cr 2014	38 9 (33 4 ~ 98 7)	22 9 (31 7 ~95)	423 (455~1128)	① ② ③					
Mo モリブデン	31 9 (20 7 ~42)	20 <i>4</i> (17 6 ~ 45 2)	40 0 (19.1 ~49.3)	① ② ③					
Mn マンガン	50 (51~166)	84 (53~201)	52 (39~180)	① ② ③			-		
Fe 鉄	4,486 (3,980~6,780)	4 236 (4 040 ~ 7 270)	4 523 (3 910 ~6 780)	① ② ③					
Cu 銅	16,135 (11,200~34,620)	7,648 (10,880~34,910)	14 934 (7,490 ~19 280)	① ② ③			_		
Zn 亜鉛	129,009 (118,000~189,000)	135	160,697	① ② ③			=		
(単位:ppb)									

有害金属

(単位:ppb)

健康被害が生じ、必須性がない金属です。

元素名	今回値 ①	前回値 ②	前々回値 ③	履歴	基準範囲	高値注意
	(標準範囲)	(標準範囲)	(標準範囲)		標準 要注意	口但八工
Cd カドミウム	32 (127以下)	9 D (13 6 以下)	33 (99以下)	① ② ③		
Hg 水銀	1 553 (3 324以下)	1,435 (4,346以下)	4 998 (6,775以下)	① ② ③		
Pb 鉛	105 (952 以下)	58 (1,085 以下)	158 (722 以下)	① ② ③		
As ヒ素	80.7 (70.7以下)	49.1 (69.5 以下)	687 (1649以下)	① ② ③		
Al アルミニウム	8,079 (6,830以下)	1 870 (7 290以下)	1,034 (4,900以下)	① ② ③		

必須ミネラル : 各範囲は一般健常者の 68% (基準範囲)、13.5% (各要注意)、2.5% (各注意) が含まれます。 有害金属 : 各範囲は一般健常者の 84% (基準範囲)、13.5% (要注意)、2.5% (注意) が含まれます。 測定単位 : 1ppb は、毛髪 1 g に 10 億分の 1 g の金属・ミネラルが含まれていることを示します。

棒グラフ : 測定値の基準範囲との相対的な評価をグラフ化しています。

測定結果 : 測定結果項目や基準範囲などの内容は予告なしに変更することがあります。

測定値: 測定値が定量下限値の場合は「~以下」と表示されます。

見本 花子 様の測定結果②

報告日:202°/07/07 **冷有番号** 1000°s2

準有害金属

元素名	今回値 ① (基準範囲)	前回値 ② (基準範囲)	前々回値 ③ (基準範囲)	歴 基準範囲 基準以上
Sr גלידלטאל	488 (22 939 0 以下)	1 255 (29 ,746 0 以下)	385 (18,745.0以下)	① ② ③
Sb アンチモン	28 (260以下)	26 (332 以下)	85 (385以下)	① ② ③
Ba בלעוא	104 (9,539以下)	249 (8918以下)	141(4.660以下)	① ② ③
(単位:ppb)				

参考ミネラル

元素名	今回値 ① (基準範囲)	前回値 ② (基準範囲)	前々回値 ③ (基準範囲)	履歴	基準範囲	基準以上
V バナジウム	105 (1829 以下)	6.1 (144.5 以下)	76 (388 以下)	① ② ③		
CO J///L	0 45 (17 63以下)	0 43 (18 9以下)	0 69 (14 86 以下)	① ② ③		
Ni ニッケル	102 00 (912以下)	13.00 以下 (1013以下)	13 00 以下 (452以下)	① ② ③		
(単位:ppb)						

その他の金属

元素名	今回値 ① (参考範囲)	前回値 ② (参考範囲)	前々回値 ③ (参考範囲)	履歴	参考範囲	参考以上
Nb ニオブ	2 以下 (199以下)	2 以下 (199以下)	2 以下 (199以下)	1 2 3		
Pd パラジウム	2 以下 (29以下)	2 以下 ^(29以下)	2 以下 ^(29以下)	1 2 3		
Nd ネオジム	2 以下 (69以下)	2 以下 (69以下)	2 以下 (69以下)	1 2 3		
W タングステン	2 以下 (39以下)	2 以下 ^(39以下)	4 (39以下)	1 2 3		
TI אַליעאַ	2 以下 (25以下)	2 以下 (25以下)	2 以下 (25以下)	1 2 3		
Pt プラチナ (白金)	2 以下 (31以下)	2 以下 (31以下)	2 以下 (31以下)	1 2 3		

(単位:ppb)

準有害金属 : 各範囲は一般健常者の 97.5% (基準範囲)、2.5% (基準以上) の方が含まれます。 参考ミネラル : 各範囲は一般健常者の 97.5% (基準範囲)、2.5% (基準以上) が含まれます。 その他の金属 : 各範囲は一般健常者の測定値から当研究所が独自に算定した範囲です。

測定単位 : 1ppb は、毛髪1gに10億分の1gの金属・ミネラルが含まれていることを示します。

棒グラフ : 測定値の基準 / 参考範囲との相対的な評価をグラフ化しています。 測定結果 : 測定結果項目や基準範囲などの内容は予告なしに変更することがあります。

測定値: 測定値が定量下限値の場合は「~以下」と表示されます。

必須ミネラル

元素名	測定結果	解説
ナトリウム Na	標準	標準範囲内です。健康意識の高い証拠です、現状を維持するよう心掛けましょう。ナトリウムは体の機能を調節し、細胞機能の維持や筋肉を正常に保つ働きがあり、主に飲食物から食塩として摂取されます。
אלעל K	標準	標準範囲内です。ミネラルだけでなく、炭水化物、タンパク質、脂質、ビタミンなどの栄養素も重要です。引き続き量より多品目の食材摂取を心掛けましょう。カリウムはナトリウムとともに神経細胞への情報伝達や血圧を調整する働きがあります。
マグネシウム Mg	要注意↓	基準範囲内ですが、やや低めの「要注意」にあります。まずは、このままの生活を続け様子を見ましょう。マグネシウムは体のほとんどすべての酵素反応や代謝を助ける因子として働きます。また、カルシウムとともに骨や歯の形成を助け維持する働きや筋肉の調整、その他にストレスを軽減する作用もあります。ストレス時にはマグネシウムの必要性が高まるので、酵素と一緒に働くビタミンB6の摂取も心がけましょう。また、カルシウムとのバランスも重要なので一緒に摂取しましょう。
カルシウム Ca	要注意↓	基準範囲内ですが、かなり低めの「要注意」にあります。まずは、このままの生活を続け様子を見ましょう。カルシウムは骨や歯の形成、筋肉の収縮、神経への情報伝達に関わる、不足しがちなミネラルのひとつです。ビタミンD やアルギニン、リジンなどのアミノ酸、牛乳 (カゼインホスホペプチドや乳糖)と一緒に摂取すると吸収が促進されます。その際、マグネシウムも一緒に摂ることを心がけましょう。一方で、過剰なリン酸(加工食品など)や脂質はカルシウムの吸収を妨げてしまうので注意しましょう。また、妊娠中、出産後の方はカルシウムの必要性が高まるので摂取を心がけましょう。
リン P	標準	標準範囲内です。ミネラルだけでなく、炭水化物、タンパク質、脂質、ビタミンなどの栄養素も重要です。引き続き量より多品目の食材摂取を心掛けましょう。リンは骨や歯の形成、エネルギー代謝に関係し、特に期待されるのは酵素反応を助ける因子としての働きです。リンは多くの食品に含まれているので通常の食生活では不足する事はほとんどないと言われています。
セレン Se	標準	標準範囲内です。ミネラルやビタミンは炭水化物やタンパク質、脂質などを効率よく代謝するのに必要です。今の栄養摂取スタイルを継続してください。セレンは、抗酸化反応をコントロールする酵素やタンパク質を構成し体内で抗酸化物質を分解する働きがあります。また動脈硬化や老化を引き起こす過酸化脂質の生成も抑制しています。
ЭПА Cr	標準	標準範囲内です。今後もバランスの良い食事を心掛けてください。ミネラルだけでなく、炭水化物、タンパク質、脂質、ビタミンなどの栄養素も重要です。体内で利用されるクロムは、人工的に作られる有毒な6価クロムと異なり、そのほとんどが自然界に存在する3価のクロムです。クロムは糖をエネルギーに変換し正常な血糖値を保つ働き、脂質代謝やタンパク質代謝など様々な代謝に関わっています。
モリブデン Mo	標準	標準範囲内です。ミネラルやビタミンは炭水化物やタンパク質、脂質などを効率よく代謝するのに必要です。今の栄養摂取スタイルを継続してください。モリブデンは酵素の働きを助ける補酵素の構成成分として糖質や脂質の代謝を助け、代謝により発生する様々な物質を最終老廃物である尿酸にする働きがあります。また、モリブデンは貧血に関係する鉄や銅の代謝にも関与しています。
マンガン	要注意↓	基準範囲内ですが、やや低めの「要注意」にあります。まずは、このままの生活を続け様子を見ましょう。マンガンは糖質、脂質やタンパク質の代謝に作用する酵素をサポートする働きや、活性酸素を分解する酵素の構成成分として働きます。また、骨の成長と生殖機能にも関係しています。一般的に通常の食生活を送っている場合は不足することはないといわれています。
鉄 Fe	標準	標準範囲内です。健康意識の高い証拠です。引き続き頑張りましょう。鉄はヘモグロビン・ミオグロビンの構成成分として存在し、体内に取り込んだ酸素を全身に供給しています。動物性食品に含まれるへム鉄は、植物性食品、乳製品などに含まれる非へム鉄に比べて数倍吸収率が高いとされています。非ヘム鉄の吸収を高めるにはビタミンCやビタミンB12を一緒に摂取すると効果的です。また、鉄の吸収を妨げるお茶やコーヒーは食事時間とずらして飲むようにしましょう。
銅 Cu	標準	標準範囲内です。健康意識の高い証拠です。現状を維持するよう心掛けましょう。銅はヘモグロビンを作るために鉄を必要な場所に運搬する働きがあります。また、酵素の構成成分として骨の代謝や活性酸素を分解する役割もあります。
亜鉛 Zn	標準	標準範囲内です。健康意識の高い証拠です。現状を維持するよう心掛けましょう。亜鉛は数百種類を超える酵素の構成成分として、D NAの複製、タンパク質合成や味覚の維持などに働きます。

有害金属

元素名	測定結果	解説
カドミウム Cd	標準	標準範囲内です。このままの生活を続けましょう。有害金属が基準範囲内にあっても必須ミネラルが基準範囲内にない方は、更にバランスの良い食事を目指しましょう。カドミウムは主に食品と飲料水から摂取され、イタイイタイ病の原因となった公害物質です。加齢とともに徐々に蓄積され、その大部分が腎臓に蓄積されます。タバコの副流煙に多く含まれるとの報告もあり、受動喫煙による健康被害も懸念されています。
水銀 Hg	標準	標準範囲内です。有害金属が基準範囲内にあっても必須ミネラルが基準範囲内にない方は、更にバランスの良い食事を目指しましょう。水銀は水俣病や第二水俣病の原因物質であり、加齢とともに徐々に蓄積する傾向にあります。私たちが摂取している水銀は大型魚に含まれるメチル水銀(有機水銀)がそのほとんどです。
鉛 Pb	標準	標準範囲内です。日頃の努力の結果が表れています。このままの食生活を続け、健康を維持しましょう。有害金属が基準範囲内にあっても必須ミネラルが基準範囲内にない方は、バランスの良い食事を目指しましょう。鉛は主に食品と飲料水から摂取されます。体内の硫黄と結合しやすいため、脳や神経系、造血系、腎臓などにさまざまな障害を引き起こすと考えられています。最近では海外製の玩具や調理器具、陶磁器から鉛の溶出が認められ問題となっています。
上素 As	要注意↑	基準範囲内ですが、やや高めの「要注意」にあります。まずは、このままの生活を続け様子を見ましょう。ヒ素は化学形態によって毒性が大きく異なり、有機ヒ素よりも無機ヒ素の方が、毒性は強いといわれています。特に日本では海藻類や魚介類を食べる習慣があるため諸外国に比べると多くのヒ素を摂取していますが、通常の食生活での摂取は問題ないとされています。また、乾燥ヒジキにも無機ヒ素が含まれていますが、水戻しで5割、ゆでこぼしで9割が軽減でき、7割以上の栄養成分が残ると報告されています。ヒ素の影響を軽減するにはセレン(魚介類、卵黄、レバー)、ビタミンD(魚類全般、キクラゲやシイタケ、卵黄)やビタミンC(緑黄色野菜、果実類)が良いとされています。
アルミニウム	要注意↑	基準範囲内ですが、やや高めの「要注意」にあります。まずは、このままの生活を続け様子を見ましょう。アルミニウムは食品からの 摂取がほとんどです。アルツハイマー病との関連性が報告され注目されるようになりましたが、今のところアルミニウムの摂取が原因 でアルツハイマー病が発症するとは言えません。アルミニウムは比較的茶葉にも多く含まれていますが、茶葉や浸出液には毒性が強い 形態のアルミニウム (A 13+) は存在しません。未加工食品より加工食品の方が多く含まれているため、心当たりのある方は注意し ましょう。菓子類から多く摂取している小児がいるため、アルミニウムを含むベーキングパウダーからアルミフリーへの商品代替も進 んでいます。アルミニウムは体内での動態などが、はっきりと解明されていないため、今後の研究が期待されます。

準有害金属

元素名	測定結果	準有害金属説明
ストロンチウム Sr	基準範囲内	ストロンチウムは液晶ディスプレイの利用がほとんどを占め、次いで磁石の材料としてモーターやスピーカーに使用されています。カルシウムと性質が似ているため、そのほとんどが骨格中に存在しています。ヒトは主に大気中、食品、飲料水から1日2mg程度摂取しています。一般的に毒性は低いとされていますが、放射性ストロンチウムは骨に蓄積し、ガンや白血病の原因になるとされています。当研究所で測定しているストロンチウムは自然界に存在する安定な金属のため放射性ストロンチウムとは異なります。
アンチモン	基準 範囲内	アンチモンは合金の材料や難燃剤としてプラスチック、ゴム、繊維、塗料などに利用されています。アンチモンの毒性は中程度ですが 化学形態により大きく異なります。アンチモンの90%は難燃剤として三酸化アンチモンとして利用されています。大気粉塵として排 出され健康上の懸念がありますが、その動態はよくわかっていません。緑茶などに含まれるタンニンはアンチモンと結合するため解毒 作用があるとされています。
バリウム Ba	基準範囲内	バリウムは光学ガラス、電子部品、プラスチックの増量剤、塗料などに利用されています。可溶性のバリウム化合物は胃腸炎、不整脈、筋肉の麻痺などを引き起こす可能性があるとされています。身近に使用されている不溶性バリウム化合物(硫酸バリウム)は胃液に溶けないため体内に吸収されることはなく、そのまま体外に排泄されるので安全とされています。また、一般的に飲料水や野菜などの植物中には毒性を示すだけの量が蓄積されることはないとされています。

参考ミネラル

元素名	測定結果	解説
バナジウム	基準 範囲内	バナジウムは二ワトリやラットでは必須性が認められ、欠乏すると成長遅延や、脂質代謝異常、生殖不全が生じます。しかし、ヒトでの必須性は認められていません。一般的に血糖値やコレステロール、血圧を下げるといわれています。富士山系の水は他の地域に比較しパナジウムを多く含んだ良質な水が取れます。そのため、ミネラルウォーターの国内製造量の半分以上が山梨県と静岡県となっています。
Co	基準 範囲内	コバルトは細菌や藻類、海藻類、マメ科植物の成長に必須なミネラルです。しかし、ヒトの体内ではコバルトそのものではなく、ビタミンB12の構成成分として、赤血球に含まれるヘモグロビンの合成や神経系の維持、睡眠などの生体リズムの調整に役立っています。
ニッケル	基準 範囲内	ニッケルは、光沢のある白銀色の金属で加工がしやすいため合金の材料として建築物や医療機器、調理器具、携帯電話など様々な用途で使用されています。身近な製品としては50円や100円、500円硬貨がその代表です。ヤギやネズミなどを使った動物実験では、ニッケルが不足すると成長障害などが生じるとため必須性が認められていますが、現在までのところヒトでの必須性はわかっていません。また、ニッケルは金属アレルギーの主な原因となります。アレルギー体質の方はアクセサリーだけではなく歯科金属にも注意しましょう。

その他の金属

元素名	測定結果	解説
ニオブ Nb	参考範囲内	ニオブは粘性や耐熱性を向上するための添加剤として鉄鋼関係の利用がその大部分を占め、それ以外に超伝導材料や電子工業用部品として利用されています。有害性については知見がないため不明な点が多いですが、腎臓に影響を与える可能性が指摘されています。
パラジウム	参考範囲内	パラジウムは自動車排ガス浄化用触媒、電気・電子工業用部品として利用されています。パラジウムは比較的体内に蓄積しにくく毒性も低いとされているため、歯科・宝飾材料としても使用されています。しかし、ピアスや指輪などで接触性皮膚炎やアレルギーになることもあります。
ネオジム Nd	参考範囲内	ネオジムは永久磁石の原料として使用され、ハードディスク、DVDプレイヤー、スマートフォンなどの高性能モーターとして使用されています。また、YAGレーザーの添加剤として医療用レーザーメスなどにも使用されています。吸収されたネオジムは肝臓と骨に蓄積するとされていますが、排泄や有害性についてはまだよくわかっていません。
タングステン	参考範囲内	タングステンは主として硬度、耐熱性が高いため超高工具として利用され、その他に電子機器、自動車などに使用されています。有害性については知見がないため不明な点が多くよくわかっていません。特殊な環境下で働く労働者において金属粉曝露により呼吸器系の症状が報告されています。
タリウム TI	参考範囲内	タリウムは金属タリウムや化合物として合金やカメラなどに使われている高屈折ガラス向けに利用されています。また、毒性が非常に高いので殺鼠剤としても利用されています。特殊な環境下で働く労働者においては、長期的な曝露によって、脱毛、神経障害や麻痺などが報告されています。
プラチナ (白金) Pt	参考範囲内	プラチナは主に自動車排ガス浄化用触媒や宝飾品に利用され、その他に電気・電子工業用、医療用では抗がん剤や歯科金属として利用されています。プラチナは安全性の高い金属とされていますが、ピアスや指輪などで接触性皮膚炎やアレルギーになることもあります。

推奨栄養素の説明①

有害金属の解毒・排泄を促す栄養素

有害金属の解毒・排泄を促すミネラル・ビタミン

栄養素名	摂取量/日	多く含まれる食材
マグ ネシウム M g	推奨量 290mg	ひよこまめ・木綿豆腐・ほうれんそう・ほっけ開き干し・するめいか・まだこ・生揚げ・がんもどき・ブラジルナッツ・まだい・ 子持ちがれい・かき・かんぱち・そば・ほしひじき・やりいか・ほたてがい(貝柱)・まこがれい・パパイア(完熟)・きんめだ い・イクラ・釜揚げしらす・マカロニ・スパゲッティ・ぶり・しゅんぎく・糸引き納豆・油揚げ・おから・鶏ささ身
カルシウム C a	推奨量 650mg	ほっけ開き干し・生揚げ・カマンベールチーズ・こまつな・モッツァレラチーズ・からふとししゃも・うなぎ・しゅんぎく・普通 牛乳・ひよこまめ・釜揚げしらす・ヨーグルト(全脂無糖)・ほうれんそう・木綿豆腐・まこがれい・プロセスチーズ・だいこん ・板こんにゃく(精粉)・ごま・はくさい・ほしひじき・油揚げ・かき・おから・さつまいも・パルメザンチーズ・パナメイエビ
tレン Se	推奨量 25ug	ほっけ開き干し・するめいか・ぶり・うなぎ・かつお・豚肝臓・鶏肝臓・かんぱち・まさば・牛肝臓・かき・まいわし・まあじ・ まだら・しろさけ・くるまえび・鶏ささ身・豚ヒレ・さんま・全卵・ひよこまめ・牛ヒレ・豚ばら・あさり・牛ばら・ほうれんそ う・糸引き納豆・普通牛乳・木綿豆腐・だいこん・マッシュルーム・しゅんぎく・ヨーグルト(全脂無糖)・こまつな・油揚げ
鉄 Fe	推奨量 6.5mg	豚肝臓・鶏肝臓・こまつな・ほっきがい・からしな・和種なばな・ほうれんそう・つまみな・生揚げ・鶏心臓・まがも・うま・牛 肝臓・ひよこまめ・豚心臓・えだまめ・みずな・しゅんぎく・牛横隔膜・ちょうせんはまぐり・葉だいこん・ほや・ぶり・あかが い・豆乳・牛ヒレ・ようさい(クウシンサイ)・あおのり・ラムかた・生湯葉・サラダな・全卵
銅 Cu	推奨量 0.8mg	牛肝臓・黄大豆・ほたるいか・ひよこまめ・いんげんまめ・豚肝臓・かき・するめいか・まだこ・イクラ・生揚げ・生湯葉・やりいか・まがも・アボカド・うるち米・あまえび・鶏肝臓・糸引き納豆・バナメイエビ・ほうれんそう・くるまえび・マカロニ・スパゲッティ・カシューナッツ(味付)・さつまいも・ヘーゼルナッツ・くるみ・ブラックタイガー・木綿豆腐・れんこん・そば
亜鉛 Zn	推奨量 8m g	かき・すけとうだら・豚肝臓・たけのこ・ラムかた・ひよこまめ・牛もも・するめいか・ほっけ・牛肝臓・牛横隔膜・牛ランプ・ほっけ開き干し・牛ヒレ・鶏肝臓・まだこ・うなぎ・ラムもも・たいらぎ・うま・牛ばら・カマンベールチーズ・モッツァレラチーズ・豚かたロース・ほっきがい・あかいか・からしな・小麦はいが・子持ちがれい・ほたてがい(貝柱)・豚ヒレ・生揚げ
ピタミン A V A	推奨量 700ugRAE	鶏肝臓・豚肝臓・あんこうきも・うなぎ・ぎんだら・牛肝臓・にんじん・ほうれんそう・モロヘイヤ・しゅんぎく・あしたば・からしな・こまつな・ほたるいか・ようさい(クウシンサイ)・フォアグラ・メロン(赤)・つるむらさき・和種なばな・トウミョウ・にら・まながつお・カマンベールチーズ・うなぎきも・イクラ・みずな・チンゲンサイ・すずき・日本かぼちゃ・ほっけ開き干し・茎にんにく
ኒ 	推奨量 1.1mg	豚ヒレ・黄大豆・豚もも・うなぎ・豚ロース・大豆たんぱく・子持ちがれい・ひよこまめ・豚ばら・ぶり・ほっけ開き干し・ひらたけ・鶏肝臓・豚肝臓・和種なばな・まこがれい・かんぱち・ほうれんそう・小麦はいが・イクラ・まだい・れんこん・こまつな・グリンピース・牛肝臓・ブラジルナッツ・うどん・するめいか・べにざけ・しゅんぎく・えのきたけ・さつまいも・マカロニ・スパゲッティ・そば
ピタミン B2 VB2	推奨量 1.2mg	豚肝臓・牛肝臓・鶏肝臓・すけとうだら・うなぎ・ほっけ開き干し・からしな・まこがれい・ぶり・まがも・子持ちがれい・ほうれんそう・カマンベールチーズ・ぐち(いしもち)・モロヘイヤ・フォアグラ・ひらたけ・牛横隔膜・イクラ・りょくとう・こまつな・かんぱち・しゅんぎく・普通牛乳・アボカド・さわら・からふとししゃも・糸引き納豆・まいわし・トウミョウ・牛ヒレ・全卵・みずな
ピタミン B6 VB6	推奨量 1.2mg	ひよこまめ・牛肝臓・とびうお・ぶり・ほっけ開き干し・まだい・黄大豆・かつお・鶏肝臓・すけとうだら・かんぱち・するめいか・まがも・鶏ささ身・豚肝臓・鶏むね・豚ヒレ・まこがれい・しろさけ・まさば・カリフラワー・子持ちがれい・アボカド・牛ヒレ・さつまいも・ほうれんそう・かます・さんま・まいわし・いさき・ブロッコリー・バナナ・ペにざけ・豚ロース・牛もも・さわら・豚もも・こまつな
葉酸 VB9	推奨量 240ug	鶏肝臓・牛肝臓・からしな・豚肝臓・りょくとう・和種なばな・ほうれんそう・ひよこまめ・黄大豆・しゅんぎく・大豆たんぱく・こまつな・ブロッコリー・たけのこ・モロヘイヤ・茎にんにく・みずな・カリフラワー・日本かぼちゃ・ようさい(クウシンサイ)・にがうり・あしたば・マンゴー・だいこん・はくさい・レタス・アボカド・フォアグラ・切干しだいこん・りょくとうもやし・小麦はいが
ピタミン B12 VB12	推奨量 2.4ug	ほっきがい・牛肝臓・すけとうだら・鶏肝臓・あんこうきも・イクラ・かき・豚肝臓・ほっけ開き干し・あさり・するめいか・子持ちがれい・はまぐり・うるめいわし・まいわし・さんま・かんぱち・まさば・しじみ・かつお・うなぎ・からふとししゃも・ぶり・べにざけ・かたくちいわし・いさき・ばかがい・ほたるいか・みるがい・まあじ・しろさけ・まこがれい・たらばがに・さわら・ぎんざけ
ピタミン C V C	推奨量 100mg	和種なばな・オレンジジュース・からしな・にがうり・カリフラワー・ブロッコリー・かき・れんこん・こまつな・ほうれんそう・みずな・トウミョウ・グレープフルーツ(白)・つまみな・あしたば・モロヘイヤ・キウイフルーツ(緑)・だいこん・さつまいも・じゃがいも・はくさい・しゅんぎく・いちご・日本かぼちゃ・メロン(赤)・牛肝臓・トマト・うんしゅうみかん・かぶ・アボカド
ピタミン E VE	目安量 6.0mg	うなぎ・あんこうきも・子持ちがれい・するめいか・和種なばな・ほうれんそう・イクラ・ほっけ開き干し・アボカド・あしたば・とびうお・日本かぼちゃ・小麦はいが・ぶり・まだこ・まこがれい・ひよこまめ・ぎんだら・生らっかせい・マンゴー・しゅんぎく・あんず・トウミョウ・ブロッコリー・アーモンド(味付)・たけのこ・まだい・ヘーゼルナッツ・あまえび・にら・ネクタリン
リポ 酸 ALA		にんじん・ほうれんそう・ブロッコリー・トマト・牛肝臓・豚肝臓・鶏肝臓
か ルタチオン G SH		豚レバー・まあじ・ぎんざけ・ホタテ・ほうれんそう・アスパラガス・トマト・キャベツ・パセリ・きゅうり・かぼちゃ・なす・ えだまめ・しめじ・メロン・えのきたけ・オレンジ・グレープフルーツ(白肉種)・オクラ・カリフラワー・くるみ・にんじん

推奨栄養素の説明②

推奨栄養素 バランスを整えるために積極的な摂取が望まれるミネラル・ビタミン

推奨宋袞	※ ハフ	ン人を整えるために積極的な摂取が望まれるミネフル・ピタミン
栄養素名	摂取量 / 日	多く含まれる食材
カリウム K	目安量 2,000mg	ほうれんそう・ひよこまめ・やまといも・ほっけ開き干し・こまつな・ひらめ・まだい・まながつお・れんこん・だいこん・アボカド・かんぱち・あしたば・しゅんぎく・するめいか・日本かぼちゃ・子持ちがれい・カリフラワー・みずな・まこがれい・ぶり・さつまいも・にがうり・ほしひじき・まだこ・サニーレタス・ほたてがい(貝柱)・じゃがいも・はくさい・うなぎ・にら
マク[*] 	推奨量 290m g	ひよこまめ・木綿豆腐・ほうれんそう・ほっけ開き干し・するめいか・まだこ・生揚げ・がんもどき・ブラジルナッツ・まだい・ 子持ちがれい・かき・かんぱち・そば・ほしひじき・やりいか・ほたてがい(貝柱)・まこがれい・パパイア(完熟)・きんめだ い・イクラ・釜揚げしらす・マカロニ・スパゲッティ・ぶり・しゅんぎく・糸引き納豆・油揚げ・おから・鶏ささ身
カルシウム C a	推奨量 650mg	ほっけ開き干し・生揚げ・カマンベールチーズ・こまつな・モッツァレラチーズ・からふとししゃも・うなぎ・しゅんぎく・普通 牛乳・ひよこまめ・金揚げしらす・ヨーグルト(全脂無糖)・ほうれんそう・木綿豆腐・まこがれい・プロセスチーズ・だいこん ・板こんにゃく(精粉)・ごま・はくさい・ほしひじき・油揚げ・かき・おから・さつまいも・パルメザンチーズ・バナメイエビ
マンガ`ン M n	目安量 3.5mg	やつがしら・黄大豆・たけのこ・日本ぐり・れんこん・生揚げ・ようさい(クウシンサイ)・うるち米・しょうが・トウミョウ・パインアップル・アマランサス・うどん・そば・ほうれんそう・発芽玄米・かき・玄米・マカロニ・スパゲッティ・しゅんぎく・ヘーゼルナッツ・さつまいも・タアサイ・凍り豆腐・くるみ・和種なばな・はいが精米・みょうが・木綿豆腐・だいずもやし
銅 Cu	推奨量 0.8mg	牛肝臓・黄大豆・ほたるいか・ひよこまめ・いんげんまめ・豚肝臓・かき・するめいか・まだこ・イクラ・生揚げ・生湯葉・やりいか・まがも・アボカド・うるち米・あまえび・鶏肝臓・糸引き納豆・バナメイエビ・ほうれんそう・くるまえび・マカロニ・スパゲッティ・カシューナッツ(味付)・さつまいも・ヘーゼルナッツ・くるみ・ブラックタイガー・木綿豆腐・れんこん・そば
亜鉛 Zn	推奨量 8m g	かき・すけとうだら・豚肝臓・たけのこ・ラムかた・ひよこまめ・牛もも・するめいか・ほっけ・牛肝臓・牛横隔膜・牛ランプ・ほっけ開き干し・牛ヒレ・鶏肝臓・まだこ・うなぎ・ラムもも・たいらぎ・うま・牛ばら・カマンベールチーズ・モッツァレラチーズ・豚かたロース・ほっきがい・あかいか・からしな・小麦はいが・子持ちがれい・ほたてがい(貝柱)・豚ヒレ・生揚げ
ピタミン A V A	推奨量 700ugRAE	鶏肝臓・豚肝臓・あんこうきも・うなぎ・ぎんだら・牛肝臓・にんじん・ほうれんそう・モロヘイヤ・しゅんぎく・あしたば・からしな・こまつな・ほたるいか・ようさい(クウシンサイ)・フォアグラ・メロン(赤)・つるむらさき・和種なばな・トウミョウ・にら・まながつお・カマンベールチーズ・うなぎきも・イクラ・みずな・チンゲンサイ・すずき・日本かぼちゃ・ほっけ開き干し・茎にんにく
Ľ ፟ ፟ 	推奨量 100mg	和種なばな・オレンジジュース・からしな・にがうり・カリフラワー・ブロッコリー・かき・れんこん・こまつな・ほうれんそう・みずな・トウミョウ・グレープフルーツ(白)・つまみな・あしたば・モロヘイヤ・キウイフルーツ(緑)・だいこん・さつまいも・じゃがいも・はくさい・しゅんぎく・いちご・日本かぼちゃ・メロン(赤)・牛肝臓・トマト・うんしゅうみかん・かぶ・アボカド
ピタミン D VD	目安量 5.5ug	あんこうきも・うなぎ・釜揚げしらす・イクラ・ベにざけ・しろさけ・まいわし・ほっけ開き干し・まこがれい・いさき・ぶり・まながつお・まだい・かます・子持ちがれい・たちうお・さんま・かつお・すずき・かんぱち・うるめいわし・まあじ・さわら・ぐち(いしもち)・まいたけ・乾燥きくらげ・まさば・まがも・かたくちいわし・きんめだい・めざし・豚肝臓・乾しいたけ・めばる・全卵
ピタミン K V K	目安量 150ug	あしたば・からしな・ほうれんそう・モロヘイヤ・こまつな・つるむらさき・和種なばな・しゅんぎく・つまみな・おかひじき・ 糸引き納豆・トウミョウ・みずな・ブロッコリー・キャベツ・にら・はくさい・茎にんにく・だいずもやし・ルッコラ・サラダな ・チンゲンサイ・ズッキーニ・日本かぼちゃ・ほしひじき・りょくとう・レタス・生揚げ・パセリ・わかめ・カリフラワー・きゅ うり

推奨栄養素の説明③

推奨栄養素の吸収促進に必要な栄養素

栄養素名	摂取量 / 日	多く含まれる食材
鉄 Fe	推奨量 6.5mg	豚肝臓・鶏肝臓・こまつな・ほっきがい・からしな・和種なばな・ほうれんそう・つまみな・生揚げ・鶏心臓・まがも・うま・牛 肝臓・ひよこまめ・豚心臓・えだまめ・みずな・しゅんぎく・牛横隔膜・ちょうせんはまぐり・葉だいこん・ほや・ぶり・あかが い・豆乳・牛ヒレ・ようさい(クウシンサイ)・あおのり・ラムかた・生湯葉・サラダな・全卵
L' 53) B6 V B 6	推奨量 1.2mg	ひよこまめ・牛肝臓・とびうお・ぶり・ほっけ開き干し・まだい・黄大豆・かつお・鶏肝臓・すけとうだら・かんぱち・するめいか・まがも・鶏ささ身・豚肝臓・鶏むね・豚ヒレ・まこがれい・しろさけ・まさば・カリフラワー・子持ちがれい・アボカド・牛 ヒレ・さつまいも・ほうれんそう・かます・さんま・まいわし・いさき・ブロッコリー・バナナ・ベにざけ・豚ロース・牛もも・ さわら・豚もも・こまつな
L' 53) E V E	目安量 6.0mg	うなぎ・あんこうきも・子持ちがれい・するめいか・和種なばな・ほうれんそう・イクラ・ほっけ開き干し・アボカド・あしたば・とびうお・日本かぼちゃ・小麦はいが・ぶり・まだこ・まこがれい・ひよこまめ・ぎんだら・生らっかせい・マンゴー・しゅんぎく・あんず・トウミョウ・ブロッコリー・アーモンド(味付)・たけのこ・まだい・ヘーゼルナッツ・あまえび・にら・ネクタリン

全産履歴(3年以内)も併記されまりので

基準範囲、測定値及び棒グラフを記載しています。前回・前々回の検査履歴(3年以内)も併記されまり 推移を確認することができます。

今回値① 前回値② 前々回値③

測定結果と標準 / 参考範囲が表示されます。

棒グラフ

測定値と基準範囲との相対的な評価をグラフ化した位置情報が表示されます。2回以上ミネラル 検査をお受けになった場合、年齢や毛髪施術(パーマ・染色など)により基準範囲が変わること があります。棒グラフから数値を判断する際にはご注意ください。

基準範囲

病院の臨床検査で病気の判断に使用されているのが「基準範囲」という指標です。健康な人 100 人が検査を行った場合、95 人が「基準範囲」内に入ります。また参考ミネラル/有害金属/準 有害金属では 97.5 人が「基準範囲」に入ります。

標準範囲

健康な人 100 人が検査を行った場合、必須ミネラルでは 68 人が「標準範囲」内に入ります。 また有害金属では 84 人が「標準範囲」に入ります。

要注意範囲

健康な人 100 人が検査を行った場合、必須ミネラルでは「各要注意範囲」に 13.5 人ずつ入ります。また有害金属では 13.5 人が「要注意範囲」に入ります。

低値注意 高値注意 基準以上 健康な人 100 人が検査を行った場合、必須ミネラルでは「低値/高値注意」に 2.5 人ずつ入ります。また有害金属では 2.5 人が「高値注意」に入ります。参考ミネラル/準有害金属では 2.5 人が「基準以上」に入ります。

参考範囲

参考範囲は健康な人における測定値の統計から当研究所が独自に算定した範囲です。

推奨栄養素の 推奨量/日 受検者様の年代・性別に必要な一日当たり摂取量を示しています。 (厚生労働省「日本人の食事摂取基準(2015年版)に準拠)

推奨栄養素の 多く含まれる 食材

表示された食材は、文部科学省「日本食品標準成分表 2 O 1 5 年版 (七訂)」に準拠しています。 (αリポ酸を除く)

また食材にアレルギーがある方は、表示食材を避けてください。

※当研究所では、受検者様に基準範囲内に入っていることで安心していただくだけではなく、基準範囲を外れる前に食生活や生活習慣を改善していただきたいという予防医学的な考えから「標準範囲」と「要注意範囲」を設けています。

基準範囲は測定結果を評価するための「目安」であるため、「基準範囲」から外れていても必ずしも異常というわけではありません。

定期的に検査を行うことでミネラルバランスや栄養状態を把握しましょう。